CVE-2022-35974 (GCVE-0-2022-35974)
Vulnerability from cvelistv5
Published
2022-09-16 21:05
Modified
2025-04-23 17:02
CWE
  • CWE-20 - Improper Input Validation
Summary
TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: < 2.7.2
Version: >= 2.8.0, < 2.8.1
Version: >= 2.9.0, < 2.9.1
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.855Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-35974",
                "options": [
                  {
                    "Exploitation": "none"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-23T13:59:22.276584Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-23T17:02:36.673Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:05:12.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613"
        }
      ],
      "source": {
        "advisory": "GHSA-vgvh-2pf4-jr2x",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `QuantizeDownAndShrinkRange` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35974",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `QuantizeDownAndShrinkRange` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-vgvh-2pf4-jr2x",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35974",
    "datePublished": "2022-09-16T21:05:12.000Z",
    "dateReserved": "2022-07-15T00:00:00.000Z",
    "dateUpdated": "2025-04-23T17:02:36.673Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "vulnrichment": {
      "containers": "{\"adp\": [{\"title\": \"CVE Program Container\", \"references\": [{\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x\", \"tags\": [\"x_refsource_CONFIRM\", \"x_transferred\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613\", \"tags\": [\"x_refsource_MISC\", \"x_transferred\"]}], \"providerMetadata\": {\"orgId\": \"af854a3a-2127-422b-91ae-364da2661108\", \"shortName\": \"CVE\", \"dateUpdated\": \"2024-08-03T09:51:59.855Z\"}}, {\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2022-35974\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"none\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"partial\"}], \"version\": \"2.0.3\", \"timestamp\": \"2025-04-23T13:59:22.276584Z\"}}}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2025-04-23T13:59:23.862Z\"}}], \"cna\": {\"title\": \"Segfault in `QuantizeDownAndShrinkRange` in TensorFlow\", \"source\": {\"advisory\": \"GHSA-vgvh-2pf4-jr2x\", \"discovery\": \"UNKNOWN\"}, \"metrics\": [{\"cvssV3_1\": {\"scope\": \"UNCHANGED\", \"version\": \"3.1\", \"baseScore\": 5.9, \"attackVector\": \"NETWORK\", \"baseSeverity\": \"MEDIUM\", \"vectorString\": \"CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H\", \"integrityImpact\": \"NONE\", \"userInteraction\": \"NONE\", \"attackComplexity\": \"HIGH\", \"availabilityImpact\": \"HIGH\", \"privilegesRequired\": \"NONE\", \"confidentialityImpact\": \"NONE\"}}], \"affected\": [{\"vendor\": \"tensorflow\", \"product\": \"tensorflow\", \"versions\": [{\"status\": \"affected\", \"version\": \"\u003c 2.7.2\"}, {\"status\": \"affected\", \"version\": \"\u003e= 2.8.0, \u003c 2.8.1\"}, {\"status\": \"affected\", \"version\": \"\u003e= 2.9.0, \u003c 2.9.1\"}]}], \"references\": [{\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x\", \"tags\": [\"x_refsource_CONFIRM\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613\", \"tags\": [\"x_refsource_MISC\"]}], \"descriptions\": [{\"lang\": \"en\", \"value\": \"TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.\"}], \"problemTypes\": [{\"descriptions\": [{\"lang\": \"en\", \"type\": \"CWE\", \"cweId\": \"CWE-20\", \"description\": \"CWE-20: Improper Input Validation\"}]}], \"providerMetadata\": {\"orgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"shortName\": \"GitHub_M\", \"dateUpdated\": \"2022-09-16T21:05:12.000Z\"}, \"x_legacyV4Record\": {\"impact\": {\"cvss\": {\"scope\": \"UNCHANGED\", \"version\": \"3.1\", \"baseScore\": 5.9, \"attackVector\": \"NETWORK\", \"baseSeverity\": \"MEDIUM\", \"vectorString\": \"CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H\", \"integrityImpact\": \"NONE\", \"userInteraction\": \"NONE\", \"attackComplexity\": \"HIGH\", \"availabilityImpact\": \"HIGH\", \"privilegesRequired\": \"NONE\", \"confidentialityImpact\": \"NONE\"}}, \"source\": {\"advisory\": \"GHSA-vgvh-2pf4-jr2x\", \"discovery\": \"UNKNOWN\"}, \"affects\": {\"vendor\": {\"vendor_data\": [{\"product\": {\"product_data\": [{\"version\": {\"version_data\": [{\"version_value\": \"\u003c 2.7.2\"}, {\"version_value\": \"\u003e= 2.8.0, \u003c 2.8.1\"}, {\"version_value\": \"\u003e= 2.9.0, \u003c 2.9.1\"}]}, \"product_name\": \"tensorflow\"}]}, \"vendor_name\": \"tensorflow\"}]}}, \"data_type\": \"CVE\", \"references\": {\"reference_data\": [{\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x\", \"name\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-vgvh-2pf4-jr2x\", \"refsource\": \"CONFIRM\"}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613\", \"name\": \"https://github.com/tensorflow/tensorflow/commit/73ad1815ebcfeb7c051f9c2f7ab5024380ca8613\", \"refsource\": \"MISC\"}]}, \"data_format\": \"MITRE\", \"description\": {\"description_data\": [{\"lang\": \"eng\", \"value\": \"TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.\"}]}, \"problemtype\": {\"problemtype_data\": [{\"description\": [{\"lang\": \"eng\", \"value\": \"CWE-20: Improper Input Validation\"}]}]}, \"data_version\": \"4.0\", \"CVE_data_meta\": {\"ID\": \"CVE-2022-35974\", \"STATE\": \"PUBLIC\", \"TITLE\": \"Segfault in `QuantizeDownAndShrinkRange` in TensorFlow\", \"ASSIGNER\": \"security-advisories@github.com\"}}}}",
      "cveMetadata": "{\"cveId\": \"CVE-2022-35974\", \"state\": \"PUBLISHED\", \"dateUpdated\": \"2025-04-23T17:02:36.673Z\", \"dateReserved\": \"2022-07-15T00:00:00.000Z\", \"assignerOrgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"datePublished\": \"2022-09-16T21:05:12.000Z\", \"assignerShortName\": \"GitHub_M\"}",
      "dataType": "CVE_RECORD",
      "dataVersion": "5.1"
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.


Loading…

Loading…