CVE-2022-23572 (GCVE-0-2022-23572)
Vulnerability from cvelistv5
Published
2022-02-04 22:32
Modified
2025-04-22 18:24
CWE
  • CWE-754 - Improper Check for Unusual or Exceptional Conditions
Summary
Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, TensorFlow can fail to specialize a type during shape inference. This case is covered by the `DCHECK` function however, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the `ValueOrDie` line. This results in an assertion failure as `ret` contains an error `Status`, not a value. In the second case we also get a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.7.0, < 2.7.1
Version: >= 2.6.0, < 2.6.3
Version: < 2.5.3
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T03:43:46.825Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174"
          }
        ],
        "title": "CVE Program Container"
      },
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2022-23572",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-04-22T15:50:10.047767Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-04-22T18:24:19.179Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.7.0, \u003c 2.7.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.6.0, \u003c 2.6.3"
            },
            {
              "status": "affected",
              "version": "\u003c 2.5.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, TensorFlow can fail to specialize a type during shape inference. This case is covered by the `DCHECK` function however, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the `ValueOrDie` line. This results in an assertion failure as `ret` contains an error `Status`, not a value. In the second case we also get a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-754",
              "description": "CWE-754: Improper Check for Unusual or Exceptional Conditions",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-02-04T22:32:29.000Z",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174"
        }
      ],
      "source": {
        "advisory": "GHSA-rww7-2gpw-fv6j",
        "discovery": "UNKNOWN"
      },
      "title": "Crash when type cannot be specialized in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-23572",
          "STATE": "PUBLIC",
          "TITLE": "Crash when type cannot be specialized in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003e= 2.7.0, \u003c 2.7.1"
                          },
                          {
                            "version_value": "\u003e= 2.6.0, \u003c 2.6.3"
                          },
                          {
                            "version_value": "\u003c 2.5.3"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, TensorFlow can fail to specialize a type during shape inference. This case is covered by the `DCHECK` function however, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the `ValueOrDie` line. This results in an assertion failure as `ret` contains an error `Status`, not a value. In the second case we also get a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 6.5,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-754: Improper Check for Unusual or Exceptional Conditions"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rww7-2gpw-fv6j",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-23572",
    "datePublished": "2022-02-04T22:32:29.000Z",
    "dateReserved": "2022-01-19T00:00:00.000Z",
    "dateUpdated": "2025-04-22T18:24:19.179Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "vulnrichment": {
      "containers": "{\"cna\": {\"affected\": [{\"product\": \"tensorflow\", \"vendor\": \"tensorflow\", \"versions\": [{\"status\": \"affected\", \"version\": \"\u003e= 2.7.0, \u003c 2.7.1\"}, {\"status\": \"affected\", \"version\": \"\u003e= 2.6.0, \u003c 2.6.3\"}, {\"status\": \"affected\", \"version\": \"\u003c 2.5.3\"}]}], \"descriptions\": [{\"lang\": \"en\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, TensorFlow can fail to specialize a type during shape inference. This case is covered by the `DCHECK` function however, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the `ValueOrDie` line. This results in an assertion failure as `ret` contains an error `Status`, not a value. In the second case we also get a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.\"}], \"metrics\": [{\"cvssV3_1\": {\"attackComplexity\": \"LOW\", \"attackVector\": \"NETWORK\", \"availabilityImpact\": \"HIGH\", \"baseScore\": 6.5, \"baseSeverity\": \"MEDIUM\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"privilegesRequired\": \"LOW\", \"scope\": \"UNCHANGED\", \"userInteraction\": \"NONE\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"version\": \"3.1\"}}], \"problemTypes\": [{\"descriptions\": [{\"cweId\": \"CWE-754\", \"description\": \"CWE-754: Improper Check for Unusual or Exceptional Conditions\", \"lang\": \"en\", \"type\": \"CWE\"}]}], \"providerMetadata\": {\"dateUpdated\": \"2022-02-04T22:32:29.000Z\", \"orgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"shortName\": \"GitHub_M\"}, \"references\": [{\"tags\": [\"x_refsource_CONFIRM\"], \"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j\"}, {\"tags\": [\"x_refsource_MISC\"], \"url\": \"https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b\"}, {\"tags\": [\"x_refsource_MISC\"], \"url\": \"https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174\"}], \"source\": {\"advisory\": \"GHSA-rww7-2gpw-fv6j\", \"discovery\": \"UNKNOWN\"}, \"title\": \"Crash when type cannot be specialized in Tensorflow\", \"x_legacyV4Record\": {\"CVE_data_meta\": {\"ASSIGNER\": \"security-advisories@github.com\", \"ID\": \"CVE-2022-23572\", \"STATE\": \"PUBLIC\", \"TITLE\": \"Crash when type cannot be specialized in Tensorflow\"}, \"affects\": {\"vendor\": {\"vendor_data\": [{\"product\": {\"product_data\": [{\"product_name\": \"tensorflow\", \"version\": {\"version_data\": [{\"version_value\": \"\u003e= 2.7.0, \u003c 2.7.1\"}, {\"version_value\": \"\u003e= 2.6.0, \u003c 2.6.3\"}, {\"version_value\": \"\u003c 2.5.3\"}]}}]}, \"vendor_name\": \"tensorflow\"}]}}, \"data_format\": \"MITRE\", \"data_type\": \"CVE\", \"data_version\": \"4.0\", \"description\": {\"description_data\": [{\"lang\": \"eng\", \"value\": \"Tensorflow is an Open Source Machine Learning Framework. Under certain scenarios, TensorFlow can fail to specialize a type during shape inference. This case is covered by the `DCHECK` function however, `DCHECK` is a no-op in production builds and an assertion failure in debug builds. In the first case execution proceeds to the `ValueOrDie` line. This results in an assertion failure as `ret` contains an error `Status`, not a value. In the second case we also get a crash due to the assertion failure. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.\"}]}, \"impact\": {\"cvss\": {\"attackComplexity\": \"LOW\", \"attackVector\": \"NETWORK\", \"availabilityImpact\": \"HIGH\", \"baseScore\": 6.5, \"baseSeverity\": \"MEDIUM\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"privilegesRequired\": \"LOW\", \"scope\": \"UNCHANGED\", \"userInteraction\": \"NONE\", \"vectorString\": \"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"version\": \"3.1\"}}, \"problemtype\": {\"problemtype_data\": [{\"description\": [{\"lang\": \"eng\", \"value\": \"CWE-754: Improper Check for Unusual or Exceptional Conditions\"}]}]}, \"references\": {\"reference_data\": [{\"name\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j\", \"refsource\": \"CONFIRM\", \"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j\"}, {\"name\": \"https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b\", \"refsource\": \"MISC\", \"url\": \"https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b\"}, {\"name\": \"https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174\", \"refsource\": \"MISC\", \"url\": \"https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174\"}]}, \"source\": {\"advisory\": \"GHSA-rww7-2gpw-fv6j\", \"discovery\": \"UNKNOWN\"}}}, \"adp\": [{\"providerMetadata\": {\"orgId\": \"af854a3a-2127-422b-91ae-364da2661108\", \"shortName\": \"CVE\", \"dateUpdated\": \"2024-08-03T03:43:46.825Z\"}, \"title\": \"CVE Program Container\", \"references\": [{\"tags\": [\"x_refsource_CONFIRM\", \"x_transferred\"], \"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rww7-2gpw-fv6j\"}, {\"tags\": [\"x_refsource_MISC\", \"x_transferred\"], \"url\": \"https://github.com/tensorflow/tensorflow/commit/cb164786dc891ea11d3a900e90367c339305dc7b\"}, {\"tags\": [\"x_refsource_MISC\", \"x_transferred\"], \"url\": \"https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/shape_inference.cc#L168-L174\"}]}, {\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2022-23572\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"poc\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"partial\"}], \"version\": \"2.0.3\", \"timestamp\": \"2025-04-22T15:50:10.047767Z\"}}}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2025-04-22T15:50:11.671Z\"}}]}",
      "cveMetadata": "{\"assignerOrgId\": \"a0819718-46f1-4df5-94e2-005712e83aaa\", \"assignerShortName\": \"GitHub_M\", \"cveId\": \"CVE-2022-23572\", \"datePublished\": \"2022-02-04T22:32:29.000Z\", \"dateReserved\": \"2022-01-19T00:00:00.000Z\", \"dateUpdated\": \"2025-04-22T18:24:19.179Z\", \"state\": \"PUBLISHED\"}",
      "dataType": "CVE_RECORD",
      "dataVersion": "5.1"
    }
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.


Loading…

Loading…